Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Front Neurol ; 15: 1303995, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38504799

RESUMEN

Purpose: Stroke is the second leading cause of global adult mortality and the primary cause of disability. A rapid assessment by a neurologist for general and reperfusion treatments in ischemic strokes is linked to decreased mortality and disability. Telestroke assessment is a strategy that allows for neurological consultations with experienced professionals, even in remote emergency contexts. No randomized studies have compared face-to-face neurological care outcomes with telestroke care. Whether neurologists in an institution achieve better results remotely than in person is also unknown. This study aimed to compare mortality and other outcomes commonly measured in stroke protocols for stroke patients assessed by a neurologist via face-to-face evaluations and telestroke assessment. Methods: Observational single-center retrospective study from August/2009 to February/2022, enrolling 2,689 patients with ischemic stroke, subarachnoid hemorrhage, and intracerebral hemorrhage. Group 1 (G1) comprised 2,437 patients with in-person neurological assessments, and Telemedicine Group 2 (G2) included 252 patients. Results: The in-person group had higher admission NIHSS scores (G1, 3 (0; 36) vs. G2, 2 (0; 26), p < 0.001). The door-to-groin puncture time was lower in the in-person group than in the telestroke group (G1, 103 (42; 310) vs. G2, 151 (109; 340), p < 0.001). The telestroke group showed superior metrics for door-to-imaging time, symptomatic hemorrhagic transformation rate in ischemic stroke patients treated with intravenous thrombolysis, hospital stay duration, higher rates of intravenous thrombolysis and mechanical thrombectomy, and lower mortality. Symptomatic hemorrhagic transformation rate was smaller in the group evaluated via telestroke (G1, 5.1% vs. G2, 1.1%, p = 0.016). Intravenous thrombolysis and mechanical thrombectomy rates were significantly higher in telestroke group: (G1, 8.6% vs. G2, 18.2%, p < 0.001 and G1, 5.1% vs. G2, 10.4%, p = 0.002, respectively). Mortality was lower in the telestroke group than in the in-person group (G1, 11.1% vs. G2, 6.7%, p = 0.001). The percentage of patients with an mRS score of 0-2 at discharge was similar in both groups when adjusting for NIHSS score and age. Conclusion: The same neurological emergency team may assess stroke patients in-person or by telemedicine, with excellent outcome metrics. This study reaffirms telestroke as a safe tool in acute stroke care.

2.
Seizure ; 90: 99-109, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33714677

RESUMEN

The basic mechanisms by which brain insults, such as trauma, stroke or status epilepticus produce epilepsy are not completely understood, and effective preventive measures and treatment are still not available in the clinical setting. Over the last 2 decades we have conducted several studies with animal models of epilepsy (rodents and non-human primates) and demonstrated that drugs that modify neuronal plastic processes, such as anticholinergic agents (e.g., antimuscarinic compounds), if administered soon after brain injury and over a period of 10-20 days, have the potential to modify the natural course of post-traumatic epilepsy. To that end treatment with scopolamine showed promising results as a candidate agent in both the pilocarpine and kainate models. We then showed that biperiden, yet another cholinergic antagonist acting in the muscarinic receptor, that is widely used to treat Parkinson's disease, also decreased the incidence and intensity of spontaneous epileptic seizures, delaying their appearance in the pilocarpine model of epilepsy. In other words, biperiden showed to be a potential candidate to be further investigated as an antiepileptogenic agent. Accordingly, we tested the safety of biperiden in a small group of patients (as a small phase II safety assessment) and confirmed its safety in the context of traumatic brain injury (TBI). Now, we provide information on our ongoing project to evaluate the efficacy of biperiden in preventing the development of epilepsy in patients that suffered TBI, in a double blind, randomized, placebo-controlled trial.


Asunto(s)
Preparaciones Farmacéuticas , Estado Epiléptico , Animales , Modelos Animales de Enfermedad , Humanos , Pilocarpina/toxicidad , Convulsiones
3.
PLoS One ; 4(2): e4642, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19247499

RESUMEN

BACKGROUND: Human neural precursor cells (hNPC) are candidates for neural transplantation in a wide range of neurological disorders. Recently, much work has been done to determine how the environment for NPC culture in vitro may alter their plasticity. Epidermal growth factor (EGF) and fibroblast growth factor-2 (FGF-2) are used to expand NPC; however, it is not clear if continuous exposure to mitogens may abrogate their subsequent differentiation. Here we evaluated if short-term removal of FGF-2 and EGF prior to plating may improve hNPC differentiation into neurons. PRINCIPAL FINDINGS: We demonstrate that culture of neurospheres in suspension for 2 weeks without EGF-FGF-2 significantly increases neuronal differentiation and neurite extension when compared to cells cultured using standard protocols. In this condition, neurons were preferentially located in the core of the neurospheres instead of the shell. Moreover, after plating, neurons presented radial rather than randomly oriented and longer processes than controls, comprised mostly by neurons with short processes. These changes were followed by alterations in the expression of genes related to cell survival. CONCLUSIONS: These results show that EGF and FGF-2 removal affects NPC fate and plasticity. Taking into account that a three dimensional structure is essential for NPC differentiation, here we evaluated, for the first time, the effects of growth factors removal in whole neurospheres rather than in plated cell culture.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Mitógenos/farmacología , Neuronas/efectos de los fármacos , Células Madre/efectos de los fármacos , Perfilación de la Expresión Génica , Proteína Ácida Fibrilar de la Glía/metabolismo , Humanos , Proteínas de Filamentos Intermediarios/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Nestina , Neuronas/citología , Neuronas/metabolismo , Células Madre/citología , Células Madre/metabolismo , Tubulina (Proteína)/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA